ઉકેલો $\frac{{1 - \left| x \right|}}{{2 - \left| x \right|}} \ge 0$
$R$
$\left[ { - 1\,,\,2} \right)\,\, \cup \,\left( {2\,,\,\infty } \right)\,$
$\left[ { - 1\,,\,1} \right]\,\, \cup \,\left( {2\,,\,\infty } \right)\,$
$\left( { - \infty ,\, - 2} \right)\,\, \cup \,\,[ - 1,\,1]\,\, \cup \,\,(2,\infty )$
ધારોકે $[t]$ એ $t$ અથવા તેનાથી નાનો મહ્તમ પૂર્ણાંક છે. ધારોકે $A$ એ $2310$ ના બધા અવિભાજ્ય અવયવોનો ગણ છે અને $f: A \rightarrow \mathbb{Z}$ એ વિધેય $f(x)=\left[\log _2\left(x^2+\left[\frac{x^3}{5}\right]\right)\right]$ છે. $A$ થી $f$ નાં વિસ્તાર પરના એક-એક વિધેયોની સંખ્યા ............ છે.
જો વિધેય $f(x)$ માટે $f\left( {x + \frac{1}{x}} \right) = {x^2} + \frac{1}{{{x^2}}};$ હોય તો $(fof )$ $\sqrt {11} )$ =
વિધેય $f(x) = \;|px - q|\; + r|x|,\;x \in ( - \infty ,\;\infty )$, કે જ્યાં $p > 0,\;q > 0,\;r > 0$ ની ન્યૂનતમ કિમંત ધારો કે માત્ર એકજ બિંદુએ મળે જો . . .
જો $f\left( x \right) = {\left( {\frac{3}{5}} \right)^x} + {\left( {\frac{4}{5}} \right)^x} - 1$ , $x \in R$ તો સમીકરણ $f(x) = 0$ ને . . . .
વિધેય $\mathrm{f}(\mathrm{x})=\log _{\sqrt{5}}(3+\cos \left(\frac{3 \pi}{4}+\mathrm{x}\right)+\cos \left(\frac{\pi}{4}+\mathrm{x}\right)+\cos \left(\frac{\pi}{4}-\mathrm{x}\right)$
$-\cos \left(\frac{3 \pi}{4}-\mathrm{x}\right))$ નો વિસ્તાર મેળવો.